(3x^2+4x-1)+(-2x^2-3x+2=)

Simple and best practice solution for (3x^2+4x-1)+(-2x^2-3x+2=) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+4x-1)+(-2x^2-3x+2=) equation:



(3x^2+4x-1)+(-2x^2-3x+2=)
We move all terms to the left:
(3x^2+4x-1)+(-2x^2-3x+2-())=0
We get rid of parentheses
(-2x^2-3x+2-())+3x^2+4x-1=0
We calculate terms in parentheses: +(-2x^2-3x+2-()), so:
-2x^2-3x+2-()
We add all the numbers together, and all the variables
-2x^2-3x
Back to the equation:
+(-2x^2-3x)
We add all the numbers together, and all the variables
3x^2+(-2x^2-3x)+4x-1=0
We get rid of parentheses
3x^2-2x^2-3x+4x-1=0
We add all the numbers together, and all the variables
x^2+x-1=0
a = 1; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·1·(-1)
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5}}{2*1}=\frac{-1-\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5}}{2*1}=\frac{-1+\sqrt{5}}{2} $

See similar equations:

| -c2-6c+8=0 | | 24x+2^3=0 | | 2(4x+4)=10x+5-2x=3 | | 4x+x+16=7x+x-20 | | b2-7b-3=0 | | 6x+9x-2=3(5x+1) | | 6x+9x-2=3(5x | | 7(4.3)=c | | c=5/9(203-32) | | -r+4-2r=19 | | 7x+12=x+12 | | 2(a/2)=2(34) | | -3=3(-4+c) | | y=6-16 | | 4x+1=4x-4 | | 3x+54=114 | | -3(6k-9)=-21 | | 2(n–6)=2+n | | 0.5(2d-6)=18 | | -5-5(1-b)=-4+5b | | 9-3(x+12)+15x=4(x+5)-15 | | 2x+7=6(x+3 | | 35=-8x+2(x=3)+11 | | 104+9m=167 | | 16=1/2•4(3+b) | | -9(x-4)=18 | | 2(x-1)+(3x+3)=4 | | 200m-75m+52525=55550-150m | | 16n-13=195 | | X+122x+20=180 | | -2=5(3x+1)-12 | | 3k-6+2k=-6 |

Equations solver categories